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Integrable discretizations of chiral models via deformation
of the differential calculus
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Institut für Theoretische Physik, Bunsenstrasse 9, D-37073 Göttingen, Germany

Received 8 March 1996

Abstract. A construction of conservation laws for chiral models (generalizedσ -models) on a
two-dimensional spacetime continuum using differential forms is extended in such a way that
it also comprises corresponding discrete versions. This is achieved via a deformation of the
ordinary differential calculus. In particular, the nonlinear Toda lattice results in this way from
the linear (continuum) wave equation. The method is applied to several further examples. We
also construct Lax pairs and Bäcklund transformations for the class of models considered in
this work.

1. Introduction

Some years ago we observed that a certain deformation of the ordinary calculus of
differential forms onRn can be used to discretize classical continuum field theories [1]. For
this purpose one has to formulate the theory in terms of differential forms. The deformation
of the differential calculus then induces a corresponding deformation of the theory built on
it. In particular, the Wilson loop formulation of lattice gauge theory originates in this way
from continuum Yang–Mills theory. In this paper we present another application of the
method, a discretization of chiral models† (or generalizedσ -models) preserving complete
integrability. After a brief introduction to deformations of the ordinary differential calculus
on R2 we generalize the derivation of conservation laws given for chiral models in [3].
As an example, we then derive the nonlinear Toda lattice [4] from the continuum wave
equation. Further examples illustrate the method and reveal its present limitations. We also
construct Lax pairs for the discretized chiral models and present Bäcklund transformations.

2. Deformation of the ordinary differential calculus on R2

In the ordinary differential calculus on manifolds, functions commute with differentials. It
is possible, however, to dispense with this property while keeping the familiar rules for
the exterior derivative (see [1] for details). The latter are consistent with the following
commutation relations:

dt f (t, x) = f (t + τ, x)dt dx f (t, x) = f (t, x + λ) dx (1)

whereτ andλ are real parameters,f is a function onR2 andt, x are the canonical coordinate
functions onR2. In particular,

[dt, t ] = τ dt [dt, x] = [dx, t ] = 0 [dx, x] = λ dx . (2)

† See [2] and references therein.
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Using these relations we obtain forτ, λ 6= 0

df = (∂+t f ) dt + (∂+xf ) dx = dt (∂−t f )+ dx (∂−xf ) (3)

with

∂+xf (t, x) = 1

λ
[f (t, x + λ)− f (t, x)] ∂−xf (t, x) = 1

λ
[f (t, x)− f (t, x − λ)] (4)

and similar expressions for∂±t f (t, x). This shows that forτ, λ 6= 0 the differential calculus
is actually defined on the algebraA of all real functions onR2†. The deformed differential
calculus has more ‘constants’ than the ordinary one. From the above formulae one finds
that df = 0 if and only if f (t + τ, x) = f (t, x) andf (t, x + λ) = f (t, x). Let us choose
a point, say 0, inR and construct the idealIτ of A generated byfτ (t, x) − fτ (0, x) for
all functionsfτ ∈ A which are periodic (with periodτ ) in the first argument. Then the
algebraA/Iτ is isomorphic to the algebra of real-valued functions onZ×R. If Iτ,λ denotes
the ideal of functions generated byfτ,λ(t, x)− fτ,λ(0, 0) for all functions periodic in both
arguments, one finds thatA/Iτ,λ is isomorphic to the algebra of real-valued functions on
Z2.

In what follows, depending on whether the parametersτ and λ are zero or not,M
denotes eitherR2, R × Z, Z × R, or Z2. Correspondingly, letA denote the algebra of
real functionsf (t, x) which are smooth in both arguments, or functionsfk(t) := f (t, kλ)

smooth in the first argument, respectively functionsfk(x) := f (kτ, x) smooth in the second
argument, or the algebra of all real functionsfk(n) := f (nτ, kλ) on Z2‡ The differential
calculus defined above is then a differential calculus on the algebraA. Acting with the
exterior derivative on (2) we obtain the 2-form relations

dx dx = 0 dt dx + dx dt = 0 dt dt = 0 . (5)

Hence dt dx is a basis of the space of 2-forms�2 as a left or rightA-module. There are no
forms of higher grade, i.e.�r = {0} for r > 3. Let� := ⊕

r>0�
r denote the differential

algebra (where�0 = A).
We introduce an inner product( , ) : �×� → A via (f, g) = f g for f, g ∈ A,

(dt, dt) = −1 (dx, dx) = 1 (dt, dx) = 0 (dt dx, dt dx) = −1 (6)

and

(ψ, φ) = (φ, ψ) (ψ, f φ) = f (ψ, φ) (7)

for ψ, φ ∈ �.§ If ψ andφ have different grades, then(ψ, φ) is set to zero. As a consequence
of these definitions we find

(ψf, φ) = (ψ, φf ) . (8)

A Hodge∗-operator can now be introduced as anR-linear operator on� via

(dt dx, φ ∗ ψ) := −(φ, ψ) . (9)

It satisfies the relations

∗ (ψ f ) = f ∗ ψ ψ ∗ φ = φ ∗ ψ (10)

† In order to perform the limitτ → 0 (λ → 0) we have to restrictA to those functions which are differentiable
in t (x).
‡ Herek and alson should be regarded as the canonical coordinate function onZ.
§ Our inner product corresponds to a metric with Lorentzian signature. The formalism works as well with a
Euclidean metric.



Integrable discretizations of chiral models 5009

whereφ andψ must have the same grade, and

∗1 = dt dx ∗ dt = −dx ∗ dx = −dt ∗ (dt dx) = −1 . (11)

Furthermore

∗ ∗ψ(t, x) = (−1)r+1ψ(t − τ, x − λ) (12)

for ψ ∈ �r .
The notion of an integral generalizes to our deformed differential calculus in a natural

way [1]. In the following sections we only need to consider one-dimensional integrals. It
is therefore sufficient here to define the integral for functions on the latticeZ. An indefinite
integral is indeed determined by

d
∫ x

f (x ′) dx ′ = f (x) dx (13)

up to a constant. For a corresponding definite integral over a lattice interval (i.e. an integer
multiple of λ), one obtains∫ nλ

mλ

f (x) dx = λ

n−1∑
k=m

f (kλ) (14)

wherem, n ∈ Z, n > m (see [1] for details).

3. Chiral models and conservation laws in two dimensions

In this section we essentially follow Brezinet al [3]. However, the following not only
works for the ordinary differential calculus but also for its deformations considered in the
previous section.B denotes a finite dimensional algebra of matrices andB∗ the group of
invertible elements ofB. Let g : M → B be invertible, i.e.g(t, x) ∈ B∗ for all t, x. In
terms of

A := g−1 dg (15)

the field equations of a chiral model (generalizedσ -model) are

d ∗ A = 0 . (16)

An infinite set of conservation laws of such a model is obtained as follows. Let0 be the
space of fields9 : M → B andD : 0 → �1 ⊗A 0 the exterior covariant derivative given
by

D9 = d9 + A9 . (17)

SinceA is a ‘pure gauge’ we have

F := dA+ AA = 0 . (18)

Moreover, using equations (16) and (10) we find

d ∗ (Aij9j
k) = d(9j

k ∗ Aij ) = (d9j
k) ∗ Aij = Aij ∗ d9j

k (19)

and thus

d ∗D9 = D ∗ d9 . (20)

Let J (m) : M → �1 ⊗ B be a conserved current, i.e.

d ∗ J (m) = 0 . (21)
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Since the first cohomology group ofM is trivial, i.e. H 1(M) = {0}, there exists
χ(m) : M → B such that

J (m) = ∗ dχ(m) . (22)

We define

J (m+1) := Dχ(m) . (23)

Starting withχ(0) = I , the identity matrix, we haveJ (0) = 0. ThenJ (1) is conserved as a
consequence of the field equation (16). Using

d ∗ J (m+1) = d ∗Dχ(m) = D ∗ dχ(m) = DJ (m) = DDχ(m−1) = F χ(m−1) = 0 (24)

it follows by induction thatJ (m), m > 1, is also conserved. We therefore obtain an infinite
number of conserved charges given by

Q(m) :=
∫
t=constant

∗J (m) (25)

(provided that the currents satisfy suitable fall off conditions at spatial infinity). Let us
calculate the first two of them. We haveJ (1) = DI = A and therefore

Q(1) =
∫
t=constant

∗A = −
∫
A0(t − τ, x) dx (26)

whereA = A0 dt + A1 dx. Since∗dχ(1) = J (1) = A we find dχ(1) = ∗A(t + τ, x + λ) by
use of (12). Hence

χ(1)(t, x) = −
∫ x

A0(t, x
′ + λ) dx ′ . (27)

and

∗J (2) = ∗Dχ(1) = J (1) + ∗ (Aχ(1)) . (28)

Using equation (10) we find

Q(2) =
∫
t=constant

∗J (2) =
∫
A1(t, x) dx −

∫
A0(t − τ, x) χ(1)(t, x) dx . (29)

Let us introduce

χ :=
∞∑
m=0

γ m χ(m) (30)

whereγ is a parameter. From equations (22) and (23) we obtain

∗ dχ(m+1) = Dχ(m) . (31)

Multiplying by γ m+1 and summing overm leads to

∗ dχ = γ Dχ . (32)

The field equations (16) are integrability conditions of the linear system (32). This is seen
as follows. Acting withD on (32) and usingF = 0, we findD ∗ dχ = 0. Applying ∗
to (32) we get dχ(t − τ, x − λ) = γ ∗ Dχ and thus d∗ Dχ = 0 which, together with
D ∗ dχ = 0, implies d∗ A = 0. IntroducingJ := ∗ dχ we have

Q(t) :=
∫
t=constant

∗J =
∫
t=constant

dχ(t − τ, x − λ) = χ(t − τ, x)|+∞
−∞ . (33)
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4. Examples

1. Toda lattice

Let B be the algebraR of real numbers and let us writeg = e−q with a functionq : M → R.
The field equations (16) then read

d ∗ (eq de−q) = 0 . (34)

(a) τ = λ= 0. Then equation (34) is just the wave equation d∗ dq = 0 and

∂2
t q − ∂2

x q = 0 . (35)

(b) τ = 0 andλ 6= 0. Then

A = −q̇k dt + 1

λ
(eqk−qk+1 − 1) dx ∗ A = q̇k dx − 1

λ
(eqk−1−qk − 1) dt (36)

whereq̇k := dqk/dt . The field equations become

q̈k = 1

λ2

[
eqk−1−qk − eqk−qk+1

]
(37)

which are those of the nonlinear Toda lattice [4]. The conserved charges can be obtained
using the method described in the previous section. In particular, evaluation of (26) using
(14) leads to

Q(1) = λ

∞∑
k=−∞

q̇k (38)

which is the total momentum. Furthermore

χ(1)(t, kλ) = λ

k∑
`=−∞

q̇`(t) (39)

(modulo addition of a constant) and thus

Q(2) =
∞∑

k=−∞

[
eqk−qk+1 − 1 + λ2

∑
`6k

q̇kq̇`

]
. (40)

This yields

Q(2) − 1

2
[Q(1)]2 =

∑
k

[
1

2
λ2q̇2

k + eqk−qk+1 − 1

]
(41)

which is the total energy.

(c) τ 6= 0, λ 6= 0. Then

A = 1

τ
(eqk(n)−qk(n+1) − 1) dt + 1

λ
(eqk(n)−qk+1(n) − 1) dx (42)

∗A = − 1

τ
(eqk(n−1)−qk(n) − 1) dx − 1

λ
(eqk−1(n)−qk(n) − 1) dt (43)

and the field equations are

1

τ 2

[
eqk(n−1)−qk(n) − eqk(n)−qk(n+1)

] = 1

λ2

[
eqk−1(n)−qk(n) − eqk(n)−qk+1(n)

]
. (44)
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This describes a discrete-time Toda lattice†. Written in the form

eqk(n)−qk(n+1) = eqk(n−1)−qk(n) − 1

c2

[
eqk−1(n)−qk(n) − eqk(n)−qk+1(n)

]
(45)

with c := λ/τ , we see that the right-hand side is not necessarily positive in contrast to the
left-hand side. As a consequence, there is a constraint on initial values. Exact solutions are
given by

qk(n) = f (k + n)− 2k ln c (46)

wheref is an arbitrary function. These ‘left movers’ do not have a right-moving counterpart.
From equations (42) and (23) it is evident thatqk(n) enters the conserved charges only
through the quantities

Uk(n) := eqk(n)−qk+1(n) Vk(n) := eqk(n)−qk(n+1) (47)

for which we obtain the following first-order system:

Uk(n+ 1) = Vk+1(n)

Vk(n)
Uk(n)

Vk(n+ 1) = Vk(n)+ c−2 [Uk(n+ 1)− Uk−1(n+ 1)] .

(48)

The first conserved charge is

Q(1)(n) = c
∑
k

[1 − Vk(n)] . (49)

Whenc 6= 1, the solutions (46) become infinite either fork → ±∞ or for n → ±∞. The
quantitiesUk(n), Vk(n) and thus also the conserved charges may remain finite, however.

2. GL(n,R)-models

We express an elementg ∈ GL(n,R) asg = ±e−q s with real q ands ∈ SL(n,R). In the
following we only discuss the caseτ = 0 andλ 6= 0. The field equations (16) then split
into the two parts

q̈k = 1

n λ2

[
eqk−1−qk tr(s−1

k−1sk)− eqk−qk+1 tr(s−1
k sk+1)

]
(50)

and

(s−1
k ṡk)˙= 1

λ2

(
eqk−qk+1

[
s−1
k sk+1 − I

n
tr(s−1

k sk+1)

]
− eqk−1−qk

[
s−1
k−1sk − I

n
tr(s−1

k−1sk)

])
(51)

(whereI is the identity matrix). The first equation resembles that of the nonlinear Toda
lattice to which it reduces fors not depending onk.

3. A GL(1 ,C)-model

We write an element ofGL(1,C) in the formg = e−q eiθ with real q and θ . In this case
the field equations forτ = 0 andλ 6= 0 read

q̈k = 1

λ2

[
eqk−1−qk cos(θk − θk−1)− eqk−qk+1 cos(θk+1 − θk)

]
(52)

θ̈k = 1

λ2

[
eqk−1−qk sin(θk − θk−1)− eqk−qk+1 sin(θk+1 − θk)

]
. (53)

† See also [5] and references therein for a class of discrete time generalized Toda lattices.
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A reduction to aU(1)-model by settingq = 0 leads to a constraint. On the other hand,
settingθ = 0 simply leads us back to the nonlinear Toda lattice.

4. A GL(1 ,H)-model

Here H denotes the quaternions. Again, we write an element in the formg = e−q u with
real q andu = α + β i + γ j + δ k, uū = α2 + β2 + γ 2 + δ2 = 1. For τ = 0 andλ 6= 0 the
field equations (16) take the form

q̈k = 1

2λ2

[
eqk−1−qk (ūk−1uk + ūkuk−1)− eqk−qk+1 (ūkuk+1 + ūk+1uk)

]
(54)

(ūku̇k)˙= 1

2λ2

[
eqk−1−qk (ūk−1uk − ūkuk−1)− eqk−qk+1 (ūkuk+1 − ūk+1uk)

]
. (55)

Although GL(1,H) is isomorphic toGL(1,R) × U(2), if we had chosen the latter
representation, some unpleasant constraints would have shown up.

5. The O(n)σ -model

Let S ∈ Rn be a unit vector,S • S = 1. The matrixg = I − 2P with P = S ⊗ S is
orthogonal. We haveP 2 = P and thereforeg−1 = g. Hence

A = 2(P dP − dP P) (56)

using dP = dP 2 = P dP + dP P . In terms ofS we have

A = 2 [S ⊗ dS − dS ⊗ S + 2S ⊗ (S • dS)S] (57)

where we used dS • S + S • dS = 0† For τ 6= 0 andλ 6= 0, we obtain

∗A = −2[S−x ⊗ ∂−xS − ∂−xS ⊗ S + 2(S−x • ∂−xS)S−x ⊗ S] dt

−2[S−t ⊗ ∂−tS − ∂−tS ⊗ S + 2(S−t • ∂−tS)S−t ⊗ S] dx (58)

with S−t (t, x) := S(t − τ, x) and a corresponding definition forS−x . The field equations
d ∗ A = 0 now take the form

∂+t
[
S−t ⊗ ∂−tS − ∂−tS ⊗ S + 2(S−t • ∂−tS)S−t ⊗ S

]
−∂+x

[
S−x ⊗ ∂−xS − ∂−xS ⊗ S + 2(S−x • ∂−xS)S−x ⊗ S

] = 0 . (59)

In the limit τ, λ → 0 we get

S ⊗ (∂2
t − ∂2

x )S = (∂2
t − ∂2

x )S ⊗ S . (60)

Acting on this equation from the left withS• and usingS • dS = 0 (which holds in the
caseτ = λ = 0), we recover the field equations of the classical nonlinearσ -model onR2

∂2
t S − ∂2

xS + (∂tS • ∂tS)S − (∂xS • ∂xS)S = 0 . (61)

The conserved charges of this model were first obtained in [7] by means of inverse scattering
methods. Whenτ = 0 andλ 6= 0, the field equations are

Sk ⊗ ∂2
t Sk − ∂2

t Sk ⊗ Sk = 1

λ2
[2 (Sk • Sk+1)Sk ⊗ Sk+1 − 2(Sk−1 • Sk)Sk−1 ⊗ Sk

−Sk+1 ⊗ Sk+1 + Sk−1 ⊗ Sk−1] (62)

† Note that (forτ 6= 0 or λ 6= 0) the non-commutativity between functions and differentials leads toS • dS 6= 0,
in general.
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in terms ofSk(t) := S(t, λk). Acting from the left‡ with Sk• and usingSk •Sk = 1 (which
implies Sk • ∂2

t Sk = −∂tSk • ∂tSk) we obtain

S̈k + (Ṡk • Ṡk)Sk + 1

λ2

[
2(Sk • Sk−1)

2 Sk − (Sk • Sk+1)Sk+1 − (Sk • Sk−1)Sk−1
] = 0 .

(63)

This does not exhaust equations (62), however. In addition we have the constraint

Sk+1 ⊗ Sk+1 − Sk−1 ⊗ Sk−1 + (Sk−1 • Sk)Sk ⊗ Sk−1 − (Sk • Sk+1)Sk ⊗ Sk+1

+(Sk−1 • Sk)Sk−1 ⊗ Sk − (Sk • Sk+1)Sk+1 ⊗ Sk = 0 . (64)

The problem is that this constraint is not automatically respected by (63) so that differenti-
ation with respect to time generates additional equations of motion. The conclusion is that
the equations governing our latticeO(n) σ -model are not ‘good’ equations. There are at
least simple exact solutions like those given by

Sk • Sk+1 = 0 Sk+2 = ±Sk S̈k + (Ṡk • Ṡk)Sk = 0 . (65)

The appearance of a constraint, as in our last example, is a rather general feature which
can be understood as follows. The equation d∗(g−1dg) = 0, whereg has values in a group,
takes the following form forτ = 0 andλ 6= 0

∂t (g
−1
k ∂tgk) = 1

λ2
(g−1
k gk+1 − g−1

k−1 gk) . (66)

Whereas the left-hand side is in the Lie algebra of the group, the right-hand side lives
in the group algebra. The deviation of the group algebra from the Lie algebra results in
constraints. In case of the orthogonal groupO(n), the left-hand side of the last equation
is an antisymmetric matrix, but this property is not shared by the right-hand side. The
symmetric part of the matrix equation is then a constraint. This problem does not appear for
GL(n)-models. In case of theO(n)-model, one may take into consideration a simultaneous
deformation ofS • S = 1 as an attempt to get rid of the constraints.

5. Lax pairs for the chiral models

In this section we construct Lax pairs for our chiral models. This establishes contact with
other formulations of integrable models (see [6], for example). The starting point is the
equation∗ dχ = γ Dχ derived in section 3.

1. M = R2

Evaluation of equation (32) leads to

∂tχ = −γ [∂xχ + (g−1∂xg) χ ] ∂xχ = −γ [∂tχ + (g−1∂tg) χ ] . (67)

Solving this system for the partial derivatives ofχ , we obtain

∂xχ = Lχ ∂tχ = M χ (68)

‡ Acting from the right with•Sk yields the same equation but withSk+1 replaced bySk−1 in the quadratic term
on the right-hand side.
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with

L(t, x; γ ) = γ

1 − γ 2
g−1 (−∂xg + γ ∂tg) M(t, x; γ ) = γ

1 − γ 2
g−1 (γ ∂xg − ∂tg) .

(69)

In terms ofL andM the integrability conditions for the system (68), which are the field
equations, read

∂tL− ∂xM + [L,M] = 0 . (70)

2. M = R × Z

In this case equation (32) yields

χ̇k = γ

λ
[g−1
k gk+1 χk+1 − χk] χk − χk−1 = −γ λ [χ̇k + g−1

k ġk χk] . (71)

Introducingψk := χk−1, φk := γ gk χk andξk := (φk, ψk)
T, we obtain

ξk+1 = Lk ξk ξ̇k = Mk ξk (72)

with

Lk(t; γ ) = γ−1

(
(γ−1 + γ ) I + λ ġk g

−1
k −gk

g−1
k 0

)
(73)

and

Mk(t; γ ) = λ−1

( −γ−1 I gk

−g−1
k−1 γ I

)
. (74)

The field equations of the chiral model are now obtained as integrability conditions of the
linear system (72) in the form

∂tL+ Lk Mk −Mk+1Lk = 0 . (75)

3. M = Z2

Now equation (32) leads to

χk(n)− χk(n− 1) = −γ
c

[gk(n)
−1 gk+1(n) χk+1(n)− χk(n)]

χk(n)− χk−1(n) = −γ c [gk(n)
−1 gk(n+ 1) χk(n+ 1)− χk(n)]

(76)

where c := λ/τ . Let us introduceψk(n) := χk−1(n − 1), φk(n) := γ gk(n) χk(n) and
ξk(n) := (φk(n), ψk(n))

T. Then

ξk+1(n) = Lk(n) ξk(n) ξk(n+ 1) = Mk(n) ξk(n) (77)

with

Lk(n; γ ) = (1 − γ c)−1 L̂k(n;β) Mk(n; γ ) = (c − γ )−1 c−1 M̂k(n;β) (78)

where

L̂k(n;β) =
(
β I − c2 gk(n) [gk(n− 1)]−1 c gk(n)

−c [gk(n− 1)]−1 I

)

M̂k(n;β) =
(
β I − gk(n) [gk−1(n)]−1 c gk(n)

−c [gk−1(n)]
−1 c2 I

) (79)
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andβ = 1 − c (γ + γ−1)+ c2. Now the field equations are obtained as

L̂k(n+ 1) M̂k(n) = M̂k+1(n) L̂k(n) (80)

(suppressing the argumentβ). The matricesL̂k andM̂k are invertible ifβ 6= 0.

6. Bäcklund transformations for the chiral models

If g is an exact solution of the field equation for a chiral model, then alsoh if

h−1dh− g−1dg = ∗ dF (81)

with a B-valued functionF . A suitable choice forF is essential for this relation to be
useful for generating new solutions from given solutions. The usual continuum (M = R2)
Bäcklund transformation is obtained forF = β h−1g whereβ is the spectral parameter (see
[8], for example). For the nonlinear Toda lattice the relation

h−1
k dhk − g−1

k dgk = β ∗ d(h−1
k gk+1) (82)

reproduces the corresponding formulae in [4]. After some manipulation, forτ = 0 and
λ 6= 0 we find

g−1
k ġk = 1

λ

(
β h−1

k−1gk + 1

β
g−1
k hk + α I

)
h−1
k ḣk = 1

λ

(
β h−1

k gk+1 + 1

β
g−1
k hk + α I

) (83)

whereα is a constant of integration. Surprisingly, written in this way it generalizes to a
Bäcklund transformation for the general chiral model onM = R × Z. However, for a non-
commutative groupB∗ the above set of equations is no longer equivalent to (82), though
there must be someF so that equation (81) is satisfied.

Now we turn to the remaining caseM = Z2. Here we proceed in a different way. For
an invertible matrix

M =
(
a b

c d

)
(84)

with entriesa, b, c, d ∈ B and forz ∈ B we defineP(M) z := (az + b)(cz + d)−1. Using
P(M)P(M′) = P(MM′) the field equations in the form (80) can now be rewritten as

P(L̂k(n+ 1))P(M̂k(n)) = P(M̂k+1(n))P(L̂k(n)) . (85)

For hk(n) ∈ B∗ we define

hk+1(n) = P(L̂k(n)) hk(n) hk(n+ 1) = P(M̂k(n)) hk(n) . (86)

The field equations forgk(n) are now recovered as integrability conditions of this system,
i.e. by calculatinghk+1(n+1) from both of the last two equations. The latter can be written
in the form

hk+1(n) = c gk(n)+ β (c [gk(n− 1)]−1 − [hk(n)]
−1)−1

c hk(n+ 1) = gk(n)+ β ([gk−1(n)]
−1 − c [hk(n)]

−1)−1
(87)

or, equivalently

gk+1(n) = c hk+1(n+ 1)+ β (c [hk+1(n)]
−1 − [gk(n)]

−1)−1

c gk(n+ 1) = hk+1(n+ 1)+ β ([hk(n+ 1)]−1 − c [gk(n)]
−1)−1 .

(88)
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The last set of equations shows that the field equations forgk(n) are also obtained by
calculatinggk+1(n+ 1) from both equations and comparing the results. As a consequence,
if gk(n) is a solution, then alsohk(n). Hence (87) defines a Bäcklund transformation.
Applied to the left movers (46) of the Toda model onZ2 and writinghk(n) = e−q ′

k(n), the
transformation leads toq ′

k(n + 1) = c−2 q ′
k+1(n) (together with a constraint on the initial

values) and thus again to left movers.

7. Conclusions

We have presented a general method for integrable discretizations of two-dimensional chiral
models via deformations of the ordinary differential calculus. As an example, the nonlinear
Toda lattice is obtained in this way from the linear wave equation. It may be regarded as
a GL(1,R) chiral model onR × Z. More generally, our method works well in particular
for GL(n,R) andGL(n,C) models. However, in the case of a chiral model for which the
group algebra differs from the Lie algebra, the resulting discretized model in general suffers
from unpleasant constraints. This has been demonstrated for theO(n) σ -model. Perhaps
there are modifications to our formalism which can improve such models.

The general formalism presented here also works for corresponding deformations of the
differential calculus onR×S1 to calculi on a periodic (space) lattice. In that case, however,
the first cohomology group is no longer trivial and (22) must no longer hold. But if the
continuum chiral model is integrable, then so are its deformations. Furthermore, one may
consider other (and in particular curved) metrics on the underlying two-dimensional space.
In fact, the possibilities for generalizing the formalism developed in this work extend far
beyond what we have mentioned up to this point. The deformed differential calculus of
section 2 may be replaced by other differential calculi with a two-dimensional space of
1-forms (see [9] for candidates). All we need is a suitable generalization of the∗-operator.
It is then possible to generalize the (continuum) definition of a chiral model. This is what
we have done in this work for a restricted class of differential calculi. It turned out that
the nonlinear Toda lattice belongs to the corresponding extended class of chiral models.
It remains to be seen whether other known integrable models can also be understood as
generalized chiral models.
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