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Abstract. A construction of conservation laws for chiral models (generalizedodels) on a
two-dimensional spacetime continuum using differential forms is extended in such a way that
it also comprises corresponding discrete versions. This is achieved via a deformation of the
ordinary differential calculus. In particular, the nonlinear Toda lattice results in this way from
the linear (continuum) wave equation. The method is applied to several further examples. We
also construct Lax pairs andaBklund transformations for the class of models considered in
this work.

1. Introduction

Some years ago we observed that a certain deformation of the ordinary calculus of
differential forms onR” can be used to discretize classical continuum field theories [1]. For
this purpose one has to formulate the theory in terms of differential forms. The deformation
of the differential calculus then induces a corresponding deformation of the theory built on
it. In particular, the Wilson loop formulation of lattice gauge theory originates in this way
from continuum Yang—Mills theory. In this paper we present another application of the
method, a discretization of chiral modelér generalized--models) preserving complete
integrability. After a brief introduction to deformations of the ordinary differential calculus
on R? we generalize the derivation of conservation laws given for chiral models in [3].
As an example, we then derive the nonlinear Toda lattice [4] from the continuum wave
equation. Further examples illustrate the method and reveal its present limitations. We also
construct Lax pairs for the discretized chiral models and preséaoklBnd transformations.

2. Deformation of the ordinary differential calculus on R?

In the ordinary differential calculus on manifolds, functions commute with differentials. It
is possible, however, to dispense with this property while keeping the familiar rules for
the exterior derivative (see [1] for details). The latter are consistent with the following
commutation relations:

dr f(t,x) = f(t +7,x)dt de £(t,x) = f(t,x + 1) dx (1)

wherer anda are real parameterg, is a function oriR? andt, x are the canonical coordinate
functions onR?. In particular,

[dr,f] =cdr  [de,x] =[dx,/] =0  [dx,x] = rdx. )

T See [2] and references therein.
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Using these relations we obtain for A £ 0

df = (04 f)dt + (01 f) dx =df (3_; f) + dx (3« f) 3
with

1 1
a-i,-xf(t,x)ZX[f(t,X‘i‘)\.)_f(t,x)] a_xf(t,x)ZX[f(t,x)_f(t,x—)\')] (4)

and similar expressions far., f (¢, x). This shows that for, A # 0 the differential calculus

is actually defined on the algebyé of all real functions oriR?f. The deformed differential
calculus has more ‘constants’ than the ordinary one. From the above formulae one finds
thatdf =0 if and only if f(r + 7,x) = f(z,x) and f(z, x + 1) = f(¢, x). Let us choose

a point, say 0, inR and construct the idedl, of A generated byf, (¢, x) — f; (0, x) for

all functions f; € A which are periodic (with period) in the first argument. Then the
algebrad/Z, is isomorphic to the algebra of real-valued functionsZorR. If Z, ; denotes

the ideal of functions generated by ; (¢, x) — f;.,(0, 0) for all functions periodic in both
arguments, one finds that/Z, ; is isomorphic to the algebra of real-valued functions on
Z2.

In what follows, depending on whether the parameterand A are zero or notM
denotes eitheR?, R x Z, Z x R, or Z2. Correspondingly, let4d denote the algebra of
real functionsf (¢, x) which are smooth in both arguments, or functioh$r) ;= f(z, kA)
smooth in the first argument, respectively functigiér) := f(kt, x) smooth in the second
argument, or the algebra of all real functiofign) = f(nt, kA) on Z?; The differential
calculus defined above is then a differential calculus on the algdbracting with the
exterior derivative on (2) we obtain the 2-form relations

dxdx =0 drdx +dedr =0 drdr =0. (5)

Hence ddx is a basis of the space of 2-forr® as a left or right4-module. There are no
forms of higher grade, i.eQ" = {0} for r > 3. LetQ := P,., Q" denote the differential
algebra (where® = A).

We introduce an inner produ¢t, ) : @ x Q — Avia (f,g) = fgfor f,g € A,

(dr,dr) = -1 (dx,dx) =1 (dt,dx) =0 (drdx,drdx) = -1 (6)
and

WV, ¢) = (9. V) W, fo)=[fW.¢) Q)

for v, ¢ € Q.§ If ¥ and¢ have different grades, thé€i, ¢) is set to zero. As a consequence
of these definitions we find

Wf o) =W, of). (8)
A Hodge x-operator can now be introduced asR#inear operator o2 via

(drdy, ¢ *y) == —(d,¥). ©)
It satisfies the relations

*(W f)=f*y Vxp=¢xy (10)

1 In order to perform the limit — O (A — 0) we have to restricid to those functions which are differentiable

int (x).

1 Herek and alson should be regarded as the canonical coordinate functia.on

§ Our inner product corresponds to a metric with Lorentzian signature. The formalism works as well with a
Euclidean metric.
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where¢ andy must have the same grade, and

*1 = drdx * dr = —dx * dx = —drt * (drdy) = —1. (11)
Furthermore

$xY(t,x) = (=D Y@ —t,x — 1) (12)
for ¢ € Q.

The notion of an integral generalizes to our deformed differential calculus in a natural
way [1]. In the following sections we only need to consider one-dimensional integrals. It
is therefore sufficient here to define the integral for functions on the latiotn indefinite
integral is indeed determined by

d/’fubmﬂ=fa>m (13)

up to a constant. For a corresponding definite integral over a lattice interval (i.e. an integer
multiple of 1), one obtains

1

ni n—
/me=x Fr) (14)

mi k=

wherem, n € Z, n > m (see [1] for details).

3. Chiral models and conservation laws in two dimensions

In this section we essentially follow Breziet al [3]. However, the following not only
works for the ordinary differential calculus but also for its deformations considered in the
previous section.3 denotes a finite dimensional algebra of matrices Bhdhe group of
invertible elements oB3. Let g : M — B be invertible, i.e.g(t,x) € B* for all ¢, x. In
terms of

A:=gtdg (15)
the field equations of a chiral model (generalizednodel) are
dxA=0. (16)

An infinite set of conservation laws of such a model is obtained as followsI'Ulst the
space of fieldst : M — BandD : T — Q' ®,4 T the exterior covariant derivative given
by

DV =d¥V 4+ AW. 7
SinceA is a ‘pure gauge’ we have

F:=dA+ AA=0. (18)
Moreover, using equations (16) and (10) we find

dx (A W/)) =d(W/, x A')) = (dW/p) x AT, = A'j « dW/, (19)
and thus

dx DW = D xdv . (20)

Let J™ : M — Q' ® B be a conserved current, i.e.
dsJ™ =0. (21)
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Since the first cohomology group aff is trivial, i.e. H(M) = {0}, there exists
x™ : M — B such that

JM = sedy™ (22)
We define

JmHY = Dy (23)

Starting with x @ = I, the identity matrix, we havg© = 0. ThenJ@ is conserved as a
consequence of the field equation (16). Using

dx J"D =dxDx™ =Dxdx™ =DJ™ =DDx" V=Fx" V=0 (24)

it follows by induction that/ ™, m > 1, is also conserved. We therefore obtain an infinite
number of conserved charges given by

om ::f xJ ™ (25)

=constant

(provided that the currents satisfy suitable fall off conditions at spatial infinity). Let us
calculate the first two of them. We havé? = DI = A and therefore

Q(l) = / *A = — / Aot — 7, x) dx (26)
t=constant

whereA = Agdr + A dx. Sincexdy™® = JO = A we find d¢® = %A(r + 7, x + 1) by
use of (12). Hence

x P, x) = —/ Ao(t, x + 1) dx’. (27)
and
#JP =xDx® = JD +x(AxD). (28)
Using equation (10) we find
0@ = / xJ@ = / Aq(t, x) dx — / Aot — 7, x) xP(z, x) dx . (29)
t=constant
Let us introduce
o0
xi=y " (30)
m=0
wherey is a parameter. From equations (22) and (23) we obtain
*d)((erl) = Dx(m) . (31)
Multiplying by y™*! and summing ovem leads to
x*dy =y Dy . (32)

The field equations (16) are integrability conditions of the linear system (32). This is seen
as follows. Acting withD on (32) and usingF = 0, we find D x dx = 0. Applying *

to (32) we get g (r — t,x — A) = y * Dy and thus d« Dx = 0 which, together with

D xdy =0, implies dx A = 0. IntroducingJ/ := xdy we have

o) :=/ *J:/ dx(t —t,x —A) = x(t — 7, x)[T2. (33)

=constant =constant
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4. Examples

1. Toda lattice

Let B be the algebr® of real numbers and let us wrige= e with a functiong : M — R.
The field equations (16) then read

dx* (¢ de ) = 0. (34)

(@) T=A=0. Then equation (34) is just the wave equatiordl = 0 and

dfq — 92 = 0. (35)
(b)y r=0andx #0. Then

1 1
A= —q dr + 5 (el — 1) dx x* A =qdx — N (eft17 — 1) dr (36)
whereg; := dg;/dt. The field equations become

. 1 _ -

Gr = p [eélk—l 9 _ ik f{k+l] (37)

which are those of the nonlinear Toda lattice [4]. The conserved charges can be obtained
using the method described in the previous section. In particular, evaluation of (26) using
(14) leads to

0P =1 > (38)
k=—o00
which is the total momentum. Furthermore
k
X k) =1 Y o) (39)
{=—00

(modulo addition of a constant) and thus

Q(Z) — Z |:e¢1k—qk+1 -1+ AZZékCH} . (40)

k=—00 <k
This yields
2 1 112 1 2.2 k—qk+1
0@ = JIQWP = | S3%E + et —1 (41)
k
which is the total energy.

()t #0,A#£0. Then

A= E(eCIk(n)—(Ik(”"'l) —1dr + }(eqk(n)—qku(n) —1)dx (42)
T A

1 1
A = _7(eqk(nfl)qu(n) -1 dx — X(é]k—l(”)*‘lk(ﬂ) -1 dt (43)
T
and the field equations are

712 [ 0-D-a) _ gum-aintD] _ 712 [ 100 _ g —aua] | (44)
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This describes a discrete-time Toda latticEVritten in the form

g M—aqrn+l) _ qge(n=1—qi(n) _ i [e‘lk—l(”)_(ik(n) _ e(/k(n>—qk+1(n)] (45)
2
C
with ¢ := A/, we see that the right-hand side is not necessarily positive in contrast to the
left-hand side. As a consequence, there is a constraint on initial values. Exact solutions are
given by

gr(n) = f(k+n) —2kInc (46)

where f is an arbitrary function. These ‘left movers’ do not have a right-moving counterpart.
From equations (42) and (23) it is evident thai{n) enters the conserved charges only
through the quantities

Ue(n) == gk (M =qir1(n) Vi(n) i= glc (=g (n+1) (47)
for which we obtain the following first-order system:
Vi
Uen +1) = 22D 1
Vi(n) (48)

Vim+ 1) = Vi(n) + ¢ 2 [U(n + 1) — Ur_1(n + 1)]..
The first conserved charge is

0P (m)=c ) [1— Vi(m]. (49)
k
Whenc¢ # 1, the solutions (46) become infinite either for~ +oo or forn — +o0o. The
quantitiesUy (n), Vi (n) and thus also the conserved charges may remain finite, however.
2. GL(nR)-models

We express an elemegte GL(n,R) asg = +e ¢ with realq ands € SL(n, R). In the
following we only discuss the case= 0 andXx # 0. The field equations (16) then split
into the two parts

1

G = [T (s — €T s k)] (50)

and
TRV ey e st AP [ |
(s, “$1) = 2 S K . tris; “si1) | — €7 S 1Sk — . tr(s; 15%)
(51)

(where is the identity matrix). The first equation resembles that of the nonlinear Toda
lattice to which it reduces fas not depending ort.
3. A GL(1 ©)-model

We write an element o6 L(1, C) in the formg = e 7 &’ with realg and6. In this case
the field equations for = 0 andx # 0 read

1
k=3 [e+7% cos(bs — 1) — €%+ CObs11 — 61 ] (52)
. 1 B . _ .
O = 1z [/ % sin(6) — x—1) — €%+ sin(Br 1 — O1) ] (53)

T See also [5] and references therein for a class of discrete time generalized Toda lattices.
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A reduction to aU (1)-model by settingy = O leads to a constraint. On the other hand,
settingé = 0 simply leads us back to the nonlinear Toda lattice.

4. A GL(1 H)-model

Here H denotes the quaternions. Again, we write an element in the foeme 7 u with
realg andu = a + Bi+y |+ 8K, uii =a?+ p2+y2+82=1. Forr = 0 andr # 0 the
field equations (16) take the form

. 1 e = _ _ - _

k=557 (€79 (ig_yup + igutg—1) — € P (g + i) | (54)
N ] o _

(@xit) = 53 [ (g—yup — igutg—1) — €D (g — dgaue) | - (55)

Although GL(1, H) is isomorphic toGL(1,R) x U(2), if we had chosen the latter
representation, some unpleasant constraints would have shown up.
5. The O(n)-model

Let S € R" be a unit vector,S ¢ S = 1. The matrixg = I — 2P with P = S® S is
orthogonal. We have®? = P and thereforgg ! = g. Hence

A=2(PdP —dP P) (56)
using @ = dP? = PdP +dP P. In terms ofS we have
A=2[S®dS—dS® S +25® (S edS)S] (57)

where we used 8 e S + S edS = 0f Fort # 0 andx # 0, we obtain
*A=-2[ST"®0,S—0_,SQS+2(S"ed_,S)S " ®S]|dr

—2[S7"®0,S—9,S®S+2(S"ed_,S) S ® S]dx (58)

with S7'(¢, x) := S(t — 7, x) and a corresponding definition f&*. The field equations
d* A = 0 now take the form

3 [ST®0,S—0,595+2(5"3_,8)S®S]

—04,[ST®0S-0_,S®S+2(S " ed_,5)SF®S]=0. (59)
In the limit , A — 0 we get
S® @7 —0)S=07-0)S®S. (60)

Acting on this equation from the left witl$'e and usingS e dS = 0 (which holds in the
caser = A = 0), we recover the field equations of the classical nonlimearodel onR?

328 — 3°S 4 (3,S 0 9,8)S — (3,5 «9,5)S = 0. (61)
The conserved charges of this model were first obtained in [7] by means of inverse scattering
methods. Whert = 0 andx # 0, the field equations are
1
S ® 928 — 328, ® S = 2 [2 (S ® Sit1) Sk ® Siy1 — 2(Sk—1 0 Si) Si—1 ® Sk

—Sk+1 ® Sk41+ Sk—1 ® Si_1] (62)

1 Note that (forr # 0 or A # 0) the non-commutativity between functions and differentials leads éalS # O,
in general.
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in terms ofS; (¢) := S(¢, Ak). Acting from the leff with S,e and usingS; ¢ S, = 1 (which

implies Sy e 325, = —9,S; ® 3,S;) we obtain

.. . . 1

Si + (Sk @ Sp) Sk + 52 [2(Sk @ Si-1)% Sk — (Sk ® Sk+1)Sk+1 — (St  Sk—1)Sk-1] = 0.
(63)

This does not exhaust equations (62), however. In addition we have the constraint

Sk+1 ® Si1 — Si—1 @ Sk—1 + (Sk—1 ® Si) Sk ® Sk—1 — (Sk ® Si11) Sk ® Siv1

+(Sk—1 0 5) Si—1 @ Sk — (S ® Siy1) Sky1 ® S =0. (64)

The problem is that this constraint is not automatically respected by (63) so that differenti-
ation with respect to time generates additional equations of motion. The conclusion is that
the equations governing our latti@@(n) o-model are not ‘good’ equations. There are at
least simple exact solutions like those given by

S eSi1=0 Sii2 = £8; Si+ (Sc eS8y S, =0. (65)

The appearance of a constraint, as in our last example, is a rather general feature which
can be understood as follows. The equaties(gi'dg) = 0, whereg has values in a group,
takes the following form for = 0 andA # 0

_ 1 _
(gt dgr) = 2 (& Yo — g gn) - (66)

Whereas the left-hand side is in the Lie algebra of the group, the right-hand side lives
in the group algebra. The deviation of the group algebra from the Lie algebra results in
constraints. In case of the orthogonal groQyn), the left-hand side of the last equation

is an antisymmetric matrix, but this property is not shared by the right-hand side. The
symmetric part of the matrix equation is then a constraint. This problem does not appear for
GL(n)-models. In case of th@ (n)-model, one may take into consideration a simultaneous
deformation ofS e S = 1 as an attempt to get rid of the constraints.

5. Lax pairs for the chiral models

In this section we construct Lax pairs for our chiral models. This establishes contact with
other formulations of integrable models (see [6], for example). The starting point is the
equationxdy = y Dy derived in section 3.

1. M =R?
Evaluation of equation (32) leads to

dx=—-vlhx+@'ex]  dx=-vx+Ex]. (67)
Solving this system for the partial derivatives pf we obtain

dx=Lx dIx =M x (68)

1 Acting from the right withe S} yields the same equation but wiS; replaced byS;_; in the quadratic term
on the right-hand side.
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with

L(t,x;y) = 4

_ 14
SVl H-dgtyag  M@xy)=

T 8 (y dg — 3g).
(69)

In terms of L and M the integrability conditions for the system (68), which are the field
equations, read

1 1

oL —0o,M+[L,M]=0. (70)
2. M=R x Z
In this case equation (32) yields
. Y. _ . 1.
Xie= [gc " grrt X1 — Xk Xk — X1 = —VALxe + &t & xil - (71)
Introducing vy := xi—1, ¢« ‘= ¥ gk xx and& := (¢, ¥i)', we obtain
Erpr = Li &k £ = My & (72)
with
I+t ragt —a
Lt;y) =yt ( . ) (73)
8k 0
and
-1
2 B
Mi(t;y) =277 ( . ) : (74)
—&g& v

The field equations of the chiral model are how obtained as integrability conditions of the
linear system (72) in the form

&L+ Ly My — Myy1 Ly =0. (75)

3. M=272
Now equation (32) leads to
1@ — e — 1) = =7 [gem) ™ gia () xisa (1) — 1 ()]
4 (76)
xe(n) = xx—1(n) = —yelgm) P g(n + 1) xe(n + 1) — xe(n)]

wherec = A/zr. Let us introduceyy(n) = xi—1(n — 1), ¢p(n) = y gx(n) xx(n) and
&) = (4 (n), Y (n))". Then

Eer1(n) = Liy(n) & (n) E(n+1) = My(n) & (n) (77)
with
Li(n;y) = (L= yo) Y Li(n; B) Mi(n;y) = (c —y) L My(n; B) (78)
where
. BI—c?g(n) g —D]™t cgeln)
Li(n; B) = ( ) )
—c[gr(n — 1] I

(79)
BI—g(n)[g—1(m]™t cgrln) )

Ven: B) =
K ) ( —elgeam] 21
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andB =1—c(y +y~Y + % Now the field equations are obtained as
Le(n + 1) Mi(n) = Mya(n) Le(n) (80)
(suppressing the argumegj. The matrices., and M, are invertible ifg £ 0.

6. Backlund transformations for the chiral models

If ¢ is an exact solution of the field equation for a chiral model, then &algo

h~ldh — g7 ldg = «dF (81)
with a B-valued functionF. A suitable choice forF is essential for this relation to be
useful for generating new solutions from given solutions. The usual contindir: R?)

Backlund transformation is obtained fér= g h~1g wherep is the spectral parameter (see
[8], for example). For the nonlinear Toda lattice the relation

hitdhy — gt dge = B+ d(h; ! gis) (82)

reproduces the corresponding formulae in [4]. After some manipulationy fer 0 and
A # 0 we find

1. 1 -1 1
8k ngX ﬁhkflgk‘f‘ggk he+al

(83)
-17 1 -1 1
hy"he = a B hy gk+1+ng he +al
whereqa is a constant of integration. Surprisingly, written in this way it generalizes to a
Backlund transformation for the general chiral modeldn= R x Z. However, for a non-
commutative grou3* the above set of equations is no longer equivalent to (82), though
there must be somg so that equation (81) is satisfied.

Now we turn to the remaining caseé = Z2. Here we proceed in a different way. For
an invertible matrix

e )

with entriesa, b, c,d € B and forz € B we defineP(M) z := (az + b)(cz + d)~. Using
PMYP(M') = P(MM’) the field equations in the form (80) can now be rewritten as

P(Ly(n + 1) P(My (1)) = P(My11(n)) P(Lg(n)). (85)
For hi(n) € B* we define
hisa(n) = P(Li(n)) hi(n) hi(n + 1) = P(My(n)) hi(n) . (86)

The field equations fog,(n) are now recovered as integrability conditions of this system,
i.e. by calculatingz;1(n + 1) from both of the last two equations. The latter can be written
in the form

hira(n) = c ge(n) + B (c[ge(m — DI = [he()]™H 7t

(87)
chi(n+1) = g(m) + B ([ge—a] ™ = c[u(m]™H*
or, equivalently
gesa(n) = Chisa(n+ D) + B (€ [hua (0] ™ = [getm] D7 (88)

cgn+1) =hn+ D+ B[+ D]t —clgem] H .
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The last set of equations shows that the field equationsgfor) are also obtained by
calculatingg,+1(n + 1) from both equations and comparing the results. As a consequence,
if gr(n) is a solution, then als@,(n). Hence (87) defines a&@klund transformation.
Applied to the left movers (46) of the Toda model @A and writing i (n) = e %™ the
transformation leads tg,(n + 1) = ¢~?¢,,(n) (together with a constraint on the initial
values) and thus again to left movers.

7. Conclusions

We have presented a general method for integrable discretizations of two-dimensional chiral
models via deformations of the ordinary differential calculus. As an example, the nonlinear
Toda lattice is obtained in this way from the linear wave equation. It may be regarded as
a GL(1,R) chiral model onR x Z. More generally, our method works well in particular

for GL(n,R) andGL(n, C) models. However, in the case of a chiral model for which the
group algebra differs from the Lie algebra, the resulting discretized model in general suffers
from unpleasant constraints. This has been demonstrated fap ¢heo-model. Perhaps
there are modifications to our formalism which can improve such models.

The general formalism presented here also works for corresponding deformations of the
differential calculus orR x S* to calculi on a periodic (space) lattice. In that case, however,
the first cohomology group is no longer trivial and (22) must no longer hold. But if the
continuum chiral model is integrable, then so are its deformations. Furthermore, one may
consider other (and in particular curved) metrics on the underlying two-dimensional space.
In fact, the possibilities for generalizing the formalism developed in this work extend far
beyond what we have mentioned up to this point. The deformed differential calculus of
section 2 may be replaced by other differential calculi with a two-dimensional space of
1-forms (see [9] for candidates). All we need is a suitable generalization cftiperator.

It is then possible to generalize the (continuum) definition of a chiral model. This is what
we have done in this work for a restricted class of differential calculi. It turned out that
the nonlinear Toda lattice belongs to the corresponding extended class of chiral models.
It remains to be seen whether other known integrable models can also be understood as
generalized chiral models.

Acknowledgment

FM-H thanks MBordemann for a stimulating discussion.

References

[1] Dimakis A, Muller-Hoissen F and Striker T 1993 From continuum to lattice theory via deformation of the
differential calculusPhys. Lett.300B 141; 1993 Noncommutative differential calculus and lattice gauge
theoryJ. Phys. A: Math. Ger6 1927

Dimakis A and Miller-Hoissen F 1992 Quantum mechanics on a latticegddformationsPhys. Lett295B
242

[2] Perelom@ A M 1987 Chiral models: geometrical aspeéttys. Rep146 135

[3] Brezin E, ltzykson C, Zinn-Justin J and Zuber J-B 1979 Remarks about the existence of nonlocal charges in
two-dimensional modelPhys. Lett82B 442

[4] Toda M 1989Theory of Nonlinear Lattice¢Berlin: Springer)

[5] Suris Yu B 1990 Discrete time generalized Toda lattices: complete integrability and relation with relativistic
Toda latticesPhys. Lett.145A 113

[6] Faddee L D and Takhtaja L A 1987 Hamiltonian Methods in the Theory of Solito(Berlin: Springer)



5018 A Dimakis and F Miller-Hoissen

[7] Luscher M and Pohimeyer K 1978 Scattering of massless lumps and non-local charges in the two-dimensional
classical non-lineas-modelNucl. PhysB 137 46

[8] Ogielski A T, Prasd M K and Sinha A 1980 Bcklund transformations and local conservation laws for
principal chiral fieldsPhys. Lett91B 387

[9] Baehr H C, Dimakis A and Nller-Hoissen F 1995 Differential calculi on commutative algehraBhys. A:
Math. Gen.28 3197



